January 2024 Daily and Annual PM2.5 Concentrations for the Contiguous United States, 1-km Grids, v1.10 (2000 – 2016) PURPOSE To provide daily and annual PM2.5 concentration data in the U.S. at a resolution of 1-km (about 30 arc-seconds) for public health research to respectively estimate short- and long-term effects on human health, and for other related research. DESCRIPTION The Daily and Annual PM2.5 Concentrations for the Contiguous United States, 1-km Grids, Version 1.10 (2000-2016) data set includes predictions of PM2.5 concentration in grid cells at a resolution of 1-km for the years 2000-2016. A generalized additive model was used that accounted for geographic difference to ensemble daily predictions of three machine learning models: neural network, random forest, and gradient boosting. The three machine learners incorporated multiple predictors, including satellite data, meteorological variables, land-use variables, elevation, chemical transport model predictions, several reanalysis data sets, and others. The annual predictions were calculated by averaging the daily predictions for each year in each grid cell. The ensembled model demonstrated better predictive performance than the individual machine learners with 10-fold cross-validated R-squared values of 0.86 for daily predictions and 0.89 for annual predictions. In version 1.10, the completeness of daily PM2.5 predictions have been enhanced by employing linear interpolation to impute missing values. Specifically, for days with small spatial patches of missing data with less than 100 grid cells, inverse distance weighting interpolation was used to fill the missing grid cells. Other missing daily PM2.5 predictions were interpolated from the nearest days with available data. Annual predictions were updated by averaging the imputed daily predictions for each year in each grid cell. These daily and annual PM2.5 predictions allow public health researchers to respectively estimate the short- and long-term effects of PM2.5 exposures on human health, supporting the U.S. Environmental Protection Agency (EPA) for the revision of the National Ambient Air Quality Standards for 24-hour average and annual average concentrations of PM2.5. The data are available in RDS and GeoTIFF formats for statistical research and geospatial analysis. The RDS files, containing a matrix of data values corresponding to geographic coordinates, are native to the R statistical computing environment that is widely used in public health research and applications. The GeoTIFF data format is widely used in earth science data and GIS communities. ACCESSING THE DATA The data may be downloaded at https://sedac.ciesin.columbia.edu/data/set/aqdh-pm2-5-concentrations-contiguous-us-1-km-v1-10-2000-2016/data-download DATA FORMAT This archive contains data in RDS and GeoTIFF formats. The data files are compressed zipfiles. Downloaded files need to be uncompressed in a single folder using either WinZip (Windows file compression utility) or similar application. Users should expect an increase in the size of downloaded data after decompression. DATA UNIT The unit for PM2.5 is micrograms (one-millionth of a gram) per cubic meter air (µg/m^3). SPATIAL EXTENT Contiguous United States (1-km grids, about 30 arc-seconds) DISCLAIMER CIESIN follows procedures designed to ensure that data disseminated by CIESIN are of reasonable quality. If, despite these procedures, users encounter apparent errors or misstatements in the data, they should contact SEDAC User Services at ciesin.info@ciesin.columbia.edu. Neither CIESIN nor NASA verifies or guarantees the accuracy, reliability, or completeness of any data provided. CIESIN provides this data without warranty of any kind whatsoever, either expressed or implied. CIESIN shall not be liable for incidental, consequential, or special damages arising out of the use of any data provided by CIESIN. USE CONSTRAINTS This work is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0). Users are free to use, copy, distribute, transmit, and adapt the work for commercial and non-commercial purposes, without restriction, as long as clear attribution of the source is provided. CITATION(S) Data Set: Qian Di1,3, Yaguang Wei1, Alexandra Shtein1, Xiaoshi Xing2, Edgar Castro1, Heresh Amini5, Carolynne Hultquist2,4, Liuhua Shi6, Itai Kloog5,7, Rachel Silvern8, James Kelly9, M. Benjamin Sabath10, Christine Choirat10, Petros Koutrakis1, Alexei Lyapustin11, Yujie Wang12, Loretta J. Mickley13, Yasmine Daouk2, and Joel Schwartz1,14. 2024. Daily and Annual PM2.5 Concentrations for the Contiguous United States, 1-km Grids, Version 1.10 (2000-2016). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/g2n9-ca10. Accessed DAY MONTH YEAR. 1 Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States 2 Center for International Earth Science Information Network (CIESIN), Columbia Climate School, Columbia University, Palisades, NY, United States 3 Vanke School of Public Health, Tsinghua University, Beijing, China 4 School of Earth and Environment, University of Canterbury, Christchurch, New Zealand 5 Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States 6 Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States 7 Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel 8 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States 9 U.S. Environmental Protection Agency (EPA), Office of Air Quality Planning and Standards (OAQPS), Research Triangle Park, NC, United States 10 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States 11 National Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC), Greenbelt, MD, United States 12 University of Maryland, Baltimore County, Baltimore, MD, United States 13 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States 14 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States Scientific Publication: Di, Q., H. Amini, L. Shi, I. Kloog, R. Silvern, J. Kelly, M. B. Sabath, C. Choirat, P. Koutrakis, A. Lyapustin, Y. Wang, L. J. Mickley, and J. Schwartz. 2019. An Ensemble-based Model of PM2.5 Concentration Across the Contiguous United States with High Spatiotemporal Resolution. Environment International, 130:104909. https://doi.org/10.1016/j.envint.2019.104909. Two R code files are provided as a part of the data set dissemination, under the same DOI (https://doi.org/10.7927/f8eh-5864) and open access license: Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0). ACKNOWLEDGEMENTS This work was supported by U.S. EPA grants RD-834798, RD-835872, and 83587201, and Health Effects Institute (HEI) grant 4953-RFA14-3/16-4 and assistance award CR-83467701. The HEI is an organization jointly funded by the U.S. EPA and certain motor vehicle and engine manufacturers. The computations were run on the Odyssey cluster supported by the Faculty of Arts & Sciences (FAS) Division of Science, Research Computing Group at Harvard University. The data conversion work from RDS to GeoTIFF with QA/QC was supported by the National Institutes of Health, National Institute of Environmental Health Sciences (NIH/NIEHS) grant R01ES032418. The contents are solely the responsibility of the grantees and do not necessarily represent the official views of the U.S. EPA. Further, the U.S. EPA does not endorse the purchase of any commercial products or services mentioned in the data or documents. The authors also thank Gregory Yetman (CIESIN) for his help with the data conversion process. POTENTIAL USE CASES It is anticipated for this work to be used for conducting new studies on individual and combined health risks of total PM2.5 concentration, environmental justice analysis, or understanding fine-scale spatiotemporal variabilities of PM2.5. The high resolution PM2.5 estimates allow epidemiologists to assess the health effects of PM2.5 with higher accuracy, and the PM2.5 estimates further help correct residual exposure measurement errors. Epidemiological studies may also use these predictions to inform public health decisions, air quality standards, and assessments of long-term health impacts of PM2.5 exposure. REFERENCES Public Health (63), Environmental Justice and Disparities (18), Air Quality Standards (17), Epidemiologic Risks and Studies (14), Urban Studies (25) Aguilera, R., Luo, N., Basu, R., Wu, J., Clemesha, R., Gershunov, A., and Benmarhnia, T. (2023). A novel ensemble-based statistical approach to estimate daily wildfire-specific PM2.5 in California (2006–2020). Environmental International, 171, 107719. https://doi.org/10.1016/j.envint.2022.107719. Alexeeff, S. E., Deosaransingh, K., Liao, N. S., Van Den Eeden, S. K., Schwartz, J., and Sidney, S. (2021). Particulate Matter and Cardiovascular Risk in Adults with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 204(2). https://doi.org/10.1164/rccm.202007-2901OC. Alexeeff, S. E., Deosaransingh, K., Van Den Eeden, S., Schwartz, J., Liao, N. S., and Sidney, S. (2023). Association of Long-term Exposure to Particulate Air Pollution With Cardiovascular Events in California. JAMA Netw Open, 6(2), e230561. https://doi.org/10.1001/jamanetworkopen.2023.0561. Alifa, M., Castruccio, S., Bolster, D., Bravo, M. A., and Crippa, P. (2023). Uncertainty reduction and environmental justice in air pollution epidemiology: The importance of minority representation. GeoHealth, 7(10), e2023GH000854. https://doi.org/10.1029/2023GH000854. Bai, J., Pugh, S. L., Eldridge, R., Yeager, K. A., Zhang, Q., Lee, W. R., Shah, A. B., Dayes, I. S., D'Souza, D. P., Michalski, J. M., Efstathiou, J. A., Longo, J. M., Pisansky, T. M., Maier, J. M., Faria, S. L., Desai, A. B., Seaward, S. A., Sandler, H. M., Cooley, M. E., and Bruner, D. W. (2023). Neighborhood deprivation and rurality associated with patient-reported outcomes and survival in men with prostate cancer in NRG RTOG 0415. International Journal of Radiation Oncology Biology Physics, 116(1), 39-49. https://doi.org/10.1016/j.ijrobp.2023.01.035. Bravo, M. A., Zephyr, D., Fiffer, M. R., and Miranda, M. L. (2024). Weekly prenatal PM2.5 and NO2 exposures in preterm, early term, and full term infants: Decrements in birth weight and critical windows of susceptibility. Environmental Research, 240(Part 1), 117509. https://doi.org/10.1016/j.envres.2023.117509. Cardenas-Iniguez, C., Schachner, J., Ip, K. I., Schertz, K. E., Gonzalez, M. R., Abad, S., and Herting, M. (2024). Building Towards an Adolescent Neural Urbanome: Expanding Environmental Measures using Linked External Data (LED) in the ABCD Study. Developmental Cognitive Neuroscience, 101338, ISSN 1878-9293. https://doi.org/10.1016/j.dcn.2023.101338. Carter, S. A., Rahman, M. M., Lin, J. C., Shu, Y. H., Chow, T., Yu, X., Martinez, M. P., Eckel, S. P., Chen, J. C., Chen, Z., Schwartz, J., Pavlovic, N., Lurmann, F. W., McConnell, R., and Xiang, A. H. (2022). In utero exposure to near-roadway air pollution and autism spectrum disorder in children. Environmental International, 158, 106898. https://doi.org/10.1016/j.envint.2021.106898. Chan, E. A., Fann, N., and Kelly, J. T. (2023). PM2.5-attributable mortality burden variability in the continental US. Atmospheric Environment, p.120131. https://doi.org/10.1016/j.atmosenv.2023.120131. Choma, E. F., Evans, J. S., Gómez-Ibáñez, J. A., et al. (2021). Health benefits of decreases in on-road transportation emissions in the United States from 2008 to 2017. Proceedings of the National Academy of Sciences, 118(51), e2107402118. https://doi.org/10.1073/pnas.2107402118. Chu, L., Chen, K., Di, Q., Crowley, S., and Dubrow, R. (2023). Associations between short-term exposure to PM2.5, NO2 and O3 pollution and kidney-related conditions and the role of temperature-adjustment specification: A case-crossover study in New York State. Environmental Pollution, 328, 121629. https://doi.org/10.1016/j.envpol.2023.121629. Costello, J. M. (2022). Air Quality and Preterm Birth: Distance to Highways, Exposure to Wildfires, and Effect Modification by COVID-19. UCSF. ProQuest ID: Costello_ucsf_0034D_12337 https://escholarship.org/uc/item/7x23x3zp. Cotter, D. L., Campbell, C. E., Sukumaran, K., McConnell, R., Berhane, K., Schwartz, J., Hackman, D. A., Ahmadi, H., Chen, J., and Herting, M. M. (2023). Effects of ambient fine particulates, nitrogen dioxide, and ozone on maturation of functional brain networks across early adolescence. Environment International, 177, 108001. https://doi.org/10.1016/j.envint.2023.108001. Cowan, K. N., Wyatt, L. H., Luben, T. J., et al. (2023). Effect measure modification of the association between short-term exposures to PM2.5 and hospitalizations by long-term PM2.5 exposure among a cohort of people with Chronic Obstructive Pulmonary Disease (COPD) in North Carolina, 2002–2015. Environmental Health, 22, 49. https://doi.org/10.1186/s12940-023-00999-4. Cserbik, D., Chen, J. C., McConnell, R., Berhane, K., Sowell, E. R., Schwartz, J., Hackman, D. A., Kan, E., Fan, C. C., and Herting, M. M. (2020). Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environmental International, 143, 105933. https://doi.org/10.1016/j.envint.2020.105933. Danesh-Yazdi, M. (2020). Air pollution and morbidity: A comprehensive assessment [Doctoral dissertation, Harvard University Graduate School of Arts and Sciences]. Harvard University Repository. https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368930. Danesh-Yazdi, M., Nassan, F. L., Kosheleva, A., Wang, C., Xu, Z., Di, Q., Requia, W. J., Comfort, N. T., Wu, H., Laurent, L. C., DeHoff, P., Vokonas, P., Baccarelli, A. A., and Schwartz, J. D. (2023). Short-term air pollution and temperature exposure and changes in the extracellular microRNA profile of Normative Aging Study (NAS) participants. Environment International, 171, 107735. https://doi.org/10.1016/j.envint.2023.107735. Danesh-Yazdi, M., Nassan, F. L., Kosheleva, A., Wang, C., Xu, Z., Di, Q., Requia, W. J., Comfort, N. T., Wu, H., Laurent, L. C., DeHoff, P., Vokonas, P., Baccarelli, A. A., and Schwartz, J. D. (2023). Intermediate and long-term exposure to air pollution and temperature and the extracellular microRNA profile of participants in the normative aging study (NAS). Environmental Research, 229, 115949. https://doi.org/10.1016/j.envres.2023.115949. Danesh-Yazdi, M., Wang, Y., Di, Q., Wei, Y., Requia, W. J., Shi, L., Sabath, M. B., Dominici, F., Coull, B. A., Evans, J. S., Koutrakis, P., and Schwartz, J. D. (2021). Long-Term Association of Air Pollution and Hospital Admissions Among Medicare Participants Using a Doubly Robust Additive Model. Circulation, 143, 1584–1596. https://doi.org/10.1161/CIRCULATIONAHA.120.050252. Danesh-Yazdi, M., Wei, Y., Di, Q., Requia, W. J., Shi, L., Sabath, M. B., Dominici, F., and Schwartz, J. (2022). The effect of long-term exposure to air pollution and seasonal temperature on hospital admissions with cardiovascular and respiratory disease in the United States: A difference-in-differences analysis. Science of The Total Environment, 843, 156855. https://doi.org/10.1016/j.scitotenv.2022.156855. DeSouza, P., Braun, D., Parks, R. M., Schwartz, J., Dominici, F., and Kioumourtzoglou, M.-A. (2021). Nationwide Study of Short-Term Exposure to Fine Particulate Matter and Cardiovascular Hospitalizations among Medicaid Enrollees. Epidemiology, 32(1), 6–13. https://doi.org/10.1097/EDE.0000000000001265. Dominici, F., Zanobetti, A., Schwartz, J., Braun, D., Sabath, B., and Wu, X. (2022). Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: Implementation of Causal Inference Methods. Res Rep Health Eff Inst, 2022(211), 1-56. PMID: 36193708; PMCID: PMC9530797. Ebisu, K., and Basu, R. (2022). Selecting exposure data and identifying relevant exposure windows for birth outcome studies. Paediatric and Perinatal Epidemiology, 36(1), 90-91. https://doi.org/10.1111/ppe.12844. Fan, C. C., Marshall, A., Smolker, H., Gonzalez, M. R., Tapert, S. F., Barch, D. M., Sowell, E., Dowling, G. J., Cardenas-Iniguez, C., Ross, J., Thompson, W. K., and Herting, M. M. (2021). Adolescent Brain Cognitive Development (ABCD) study Linked External Data (LED): Protocol and practices for geocoding and assignment of environmental data. Developmental Cognitive Neuroscience, 52, 101030. https://doi.org/10.1016/j.dcn.2021.101030. Feng, Y., Wei, Y., Coull, B. A., and Schwartz, J. D. (2023). Measurement error correction for ambient PM2.5 exposure using stratified regression calibration: Effects on all-cause mortality. Environmental Research, 216(Part 4), 114792. https://doi.org/10.1016/j.envres.2022.114792. Heft-Neal, S., Driscoll, A., Yang, W., Shaw, G., and Burke, M. (2022). Associations between wildfire smoke exposure during pregnancy and risk of preterm birth in California. Environmental Research, 203, 111872. https://doi.org/10.1016/j.envres.2021.111872. Heo, S., and Bell, M. L. (2023). Investigation on urban greenspace in relation to sociodemographic factors and health inequity based on different greenspace metrics in 3 US urban communities. Journal of Exposure Science & Environmental Epidemiology, 33, 218-228. https://doi.org/10.1038/s41370-022-00468-z. Industrial Economics, Incorporated (2022). IEc: Analysis of PM2.5-Related Health Burdens Under Current and Alternative NAAQS Environmental Defense Fund, Final Report April 15. https://globalcleanair.org/wp-content/blogs.dir/95/files/2022/05/Analysis-of-PM2.5-Related-Health-Burdens-Under-Current-and-Alternative-NAAQS.pdf. Iyanna, N., Yolton, K., LeMasters, G., Lanphear, B. P., Cecil, K. M., Schwartz, J., Brokamp, C., Rasnick, E., Xu, Y., MacDougall, M. C., and Ryan, P. H. (2023). Air pollution exposure and social responsiveness in childhood: The Cincinnati combined childhood cohorts. International Journal of Hygiene and Environmental Health, 251, 114172. https://doi.org/10.1016/j.ijheh.2023.114172. Jbaily, A., Zhou, X., Liu, J., Lee, T.-H., Kamareddine, L., Verguet, S., and Dominici, F. (2022). Air pollution exposure disparities across US population and income groups. Nature, 601:228–233. https://doi.org/10.1038/s41586-021-04190-y. Jin, T., Amini, H., Kosheleva, A., et al. (2022). Associations between long-term exposures to airborne PM2.5 components and mortality in Massachusetts: mixture analysis exploration. Environmental Health, 21, 96. https://doi.org/10.1186/s12940-022-00907-2. Jin, T., Di, Q., Réquia, W. J., Danesh-Yazdi, M., Castro, E., Ma, T., Wang, Y., Zhang, H., Shi, L., and Schwartz, J. (2022). Associations between long-term air pollution exposure and the incidence of cardiovascular diseases among American older adults. Environment International, 170, 107594. https://doi.org/10.1016/j.envint.2022.107594. Josey, K. P., Delaney, S. W., Wu, X., Nethery, R. C., DeSouza, P., Braun, D., and Dominici, F. (2023). Air Pollution and Mortality at the Intersection of Race and Social Class. The New England Journal of Medicine, 388, 1396-1404. https://doi.org/10.1056/NEJMsa2300523. Josey, K. P., Nethery, R. C., Visaria, A., Bates, B., Gandhi, P., Parthasarathi, A., Rua, M., Robinson, D., and Setoguchi, S. (2022). A retrospective cohort study investigating synergism of air pollution and corticosteroid exposure in promoting cardiovascular and thromboembolic events in older adults. medRxiv, pp.2022-12. https://doi.org/10.1101/2022.12.15.22283489. Kelly, J. T., Jang, C., Timin, B., Di, Q., Schwartz, J., Liu, Y., van Donkelaar, A., Martin, R. V., Berrocal, V., and Bell, M. L. (2021). Examining PM2.5 concentrations and exposure using multiple models. Environmental Research, 196, 110432. https://doi.org/10.1016/j.envres.2021.110432. Kelp, M. M., Lin, S., Kutz, J. N., and Mickley, L. J. (2022). A new approach for determining optimal placement of PM2.5 air quality sensors: case study for the contiguous United States. Environmental Research Letters, 17(3), 034034. https://doi.org/10.1088/1748-9326/ac548f. Kelp, M. M., Fargiano, T. C., Lin, S., Liu, T., Turner, J. R., Kutz, N., and Mickley, L. J. (2023). Data-driven placement of PM2.5 air quality sensors in the United States: An approach to target urban environmental injustice. GeoHealth, 7, e2023GH000834. https://doi.org/10.1029/2023GH000834. Klompmaker, J. O., Laden, F., Browning, M. H.E.M., Dominici, F., Ogletree, S. S., Rigolon, A., Hart, J. E., and James, P. (2022). Associations of parks, greenness, and blue space with cardiovascular and respiratory disease hospitalization in the US Medicare cohort. Environmental Pollution, 312, 120046. https://doi.org/10.1016/j.envpol.2022.120046. Klompmaker, J. O., Laden, F., James, P., Sabath, M. B., Wu, X., Schwartz, J., Dominici, F., Zanobetti, A., and Hart, J. E. (2023). Effects of long-term average temperature on cardiovascular disease hospitalizations in an American elderly population. Environmental Research, 216(3), 114684. https://doi.org/10.1016/j.envres.2022.114684. Leung, M., Weisskopf, M. G., Laden, F., Coull, B. A., Modest, A. M., Hacker, M. R., Wylie, B. J., Wei, Y., Schwartz, J., and Papatheodorou, S. (2022). Exposure to PM2.5 during Pregnancy and Fetal Growth in Eastern Massachusetts, USA. Environmental Health Perspectives, 130(1), CID: 017004. https://doi.org/10.1289/EHP9824. Li, H., Deng, W., Small, R., Schwartz, J., Liu, J., and Shi, L. (2022). Health effects of air pollutant mixtures on overall mortality among the elderly population using Bayesian kernel machine regression (BKMR). Chemosphere, 286(Part 1), 131566. https://doi.org/10.1016/j.chemosphere.2021.131566. Liang, D., Shi, L., Zhao, J., Liu, P., Sarnat, J. A., Gao, S., Schwartz, J., Liu, Y., Ebelt, S. T., Scovronick, N., and Chang, H. H. (2020). Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the United States. The Innovation, 1(3). https://doi.org/10.1016/j.xinn.2020.100047. Liao, N. S., Sidney, S., Deosaransingh, K., Van Den Eeden, S. K., Schwartz, J., and Alexeeff, S. E. (2021). Particulate Air Pollution and Risk of Cardiovascular Events Among Adults With a History of Stroke or Acute Myocardial Infarction. Journal of the American Heart Association, 10, e019758. https://doi.org/10.1161/JAHA.120.019758. Lu, W., Hackman D. A., and Schwartz J. (2021). Ambient air pollution associated with lower academic achievement among US children: A nationwide panel study of school districts. Environ Epidemiol. Nov 3;5(6):e174. PMID: 34909554; PMCID: PMC8663889. https://doi.org/10.1097/EE9.0000000000000174. Ma, T., Danesh-Yazdi, M., Schwartz, J., Réquia, W. J., Di, Q., Wei, Y., Chang, H. H., Vaccarino, V., Liu, P., and Shi, L. (2022). Long-term air pollution exposure and incident stroke in American older adults: A national cohort study. Global Epidemiology, 4, 100073. https://doi.org/10.1016/j.gloepi.2022.100073. Ma, Y., Zang, E., Liu, Y., Lu, Y., Krumholz, H. M., Bell, M. L., and Chen, K. (2023). Wildfire smoke PM2.5 and mortality in the contiguous United States. medRxiv. https://doi.org/10.1101/2023.01.31.23285059. Ma, Y., Zang, E., Opara, I. et al. (2023). Racial/ethnic disparities in PM2.5-attributable cardiovascular mortality burden in the United States. Nature Human Behaviour. https://doi.org/10.1038/s41562-023-01694-7. Mork, D., Braun, D., and Zanobetti, A. (2023). Time-lagged relationships between a decade of air pollution exposure and first hospitalization with Alzheimer's disease and related dementias. Environment International, 171, 107694. https://doi.org/10.1016/j.envint.2022.107694. Nassan, F. L., Kelly, R. S., Koutrakis, P., Vokonas, P. S., Lasky-Su, J. A., and Schwartz, J. D. (2021). Metabolomic signatures of the short-term exposure to air pollution and temperature. Environmental Research, 201, 111553. https://doi.org/10.1016/j.envres.2021.111553. Peralta, A. A., Gold, D. R., Danesh-Yazdi, M., Wei, Y., and Schwartz, J. (2023). The role of short-term air pollution and temperature on arterial stiffness in a longitudinal closed cohort of elderly individuals. Environmental Research, 216(Part 2), 114597. https://doi.org/10.1016/j.envres.2022.114597. Peralta, A. A., Link, M. S., Schwartz, J., Luttmann-Gibson, H., Dockery, D.W., Blomberg, A., Wei, Y., Mittleman, M. A., Gold, D. R., et al. (2020). Exposure to Air Pollution and Particle Radioactivity With the Risk of Ventricular Arrhythmias. Circulation, 142(9), 858–867. PMID: 36778437; PMCID: PMC9915814. https://doi.org/10.1161/CIRCULATIONAHA.120.046321. Qian, Y., Li, H., Rosenberg, A., Li, Q., Sarnat, J., Papatheodorou, S., Schwartz, J., Liang, D., Liu, Y., Liu, P., and Shi, L. (2021). Long-Term Exposure to Low-Level NO2 and Mortality among the Elderly Population in the Southeastern United States. Environmental Health Perspectives, 129(12). https://doi.org/10.1289/EHP9044. Qiu, X., Danesh-Yazdi, M., Wei, Y., Di, Q., Just, A., Zanobetti, A., Weisskopf, M., Dominici, F., and Schwartz, J. (2022). Associations of short-term exposure to air pollution and increased ambient temperature with psychiatric hospital admissions in older adults in the USA: A case–crossover study. The Lancet Planetary Health, 6(4), e331-e341. https://doi.org/10.1016/S2542-5196(22)00017-1. Qiu, X., Danesh-Yazdi, M., Weisskopf, M., Kosheleva, A., Spiro, A., Wang, C., Coull, B. A., Koutrakis, P., and Schwartz, J. D. (2022). Associations between air pollution and psychiatric symptoms in the Normative Aging Study. Environmental Research Letters, 17(3), 034004. https://doi.org/10.1088/1748-9326/ac47c5. Qiu, X., Shi, L., Kubzansky, L. D., Wei, Y., Castro, E., Li, H., Weisskopf, M. G., and Schwartz, J. D. (2023). Association of long-term exposure to air pollution with late-life depression in older adults in the US. JAMA Network Open, 6(2), e2253668-e2253668. https://doi.org/10.1001/jamanetworkopen.2022.53668. Qiu, X., Wei, Y., Weisskopf, M., et al. (2023). Air pollution, climate conditions and risk of hospital admissions for psychotic disorders in U.S. residents. Environmental Research, 216(Part 2), 114636. https://doi.org/10.1016/j.envres.2022.114636. Ren, B., Wu, X., Braun, D., Pillai, N., and Dominici, F. (2023). A Bayesian Gaussian Process for Estimating a Causal Exposure Response Curve in Environmental Epidemiology (Version 3). arXiv preprint arXiv:2105.03454v. https://doi.org/10.48550/arXiv.2105.03454. Schlosser, C. A., Frankenfeld, C., Eastham, S., Gao, X., Gurgel, A., McCluskey, A., Morris, J., Orzach, S., Rouge, K., Paltsev, S., and Reilly, J. (2022). Assessing Compounding Risks Across Multiple Systems and Sectors: A Socio-Environmental Systems Risk-Triage Approach. Frontiers in Climate, 5, p.1100600. https://doi.org/10.3389/fclim.2023.1100600. Schwartz, J. D., Di, Q., Requia, W. J., Dominici, F., and Zanobetti, A. (2021). A direct estimate of the impact of PM2.5, NO2, and O3 exposure on life expectancy using propensity scores. Epidemiology, 32(4), 469-476. https://doi.org/10.1097/EDE.0000000000001354. Schwartz, J. D., Yitshak-Sade, M., Zanobetti, A., Di, Q., Requia, W. J., Dominici, F., and Mittleman, M. A. (2021). A self-controlled approach to survival analysis, with application to air pollution and mortality. Environment International, 157, 106861. https://doi.org/10.1016/j.envint.2021.106861. Schwartz, J., Wei, Y., Dominici, F., and Danesh-Yazdi, M. (2023). Effects of low-level air pollution exposures on hospital admission for myocardial infarction using multiple causal models. Environmental Research, p.116203. https://doi.org/10.1016/j.envres.2023.116203. Schwartz, J., Wei, Y., Yitshak-Sade, M., Di, Q., Dominici, F., and Zanobetti, A. (2021). A national difference in differences analysis of the effect of PM2.5 on annual death rates. Environmental Research, 194, 110649. https://doi.org/10.1016/j.envres.2020.110649. Shi, L., Steenland, K., Li, H. et al. (2021). A national cohort study (2000–2018) of long-term air pollution exposure and incident dementia in older adults in the United States. Nature Communications, 12(1), 6754. https://doi.org/10.1038/s41467-021-27049-2. Shi, L., Wu, X., Danesh-Yazdi, M., Braun, D., Awad, Y. A., Wei, Y., Liu, P., Di, Q., Wang, Y., Schwartz, J., and Dominici, F. (2020). Long-term effects of PM2·5 on neurological disorders in the American Medicare population: a longitudinal cohort study. The Lancet Planetary Health, 4(12), e557-e565. https://doi.org/10.1016/S2542-5196(20)30227-8. Sukumaran, K., Cardenas-Iniguez, C., Burnor, E., Bottenhorn, K. L., Hackman, D. A., McConnell, R., Berhane, K., Schwartz, J., Chen, J. C. and Herting, M. M. (2023). Ambient fine particulate exposure and subcortical gray matter microarchitecture in 9-and 10-year-old children across the United States. Iscience, 26(3). https://doi.org/10.1016/j.isci.2023.106087. Thilakaratne, R., Hoshiko, S., Rosenberg, A., Hayashi, T., Buckman, J. R., and Rappold, A. G. (2022). Wildfires and the Changing Landscape of Air Pollution–related Health Burden in California. American Journal of Respiratory and Critical Care Medicine, 207(7). https://doi.org/10.1164/rccm.202207-1324OC. Wang, V. A., Leung, M., Li, L., et al. (2023). Prenatal exposure to ambient particle radioactivity and fetal growth in Eastern Massachusetts. Air Quality, Atmosphere & Health, 16, 805–815. https://doi.org/10.1007/s11869-023-01311-6. Wang, V. A., Leung, M., Modest, A. M., Vieira, C. L. Z., Hacker, M. R., Schwartz, J., Coull, B. A., Koutrakis, P., and Papatheodorou, S. (2023). Associations of solar activity and related exposures with fetal growth. Science of The Total Environment, 885, p.163862. https://doi.org/10.1016/j.scitotenv.2023.163862. Wang, X., Ding, N., Harlow, S. D., Randolph, J. F., Gold, E. B., Derby, C., Kravitz, H. M., Greendale, G., Wu, X., Ebisu, K., Schwartz, J., and Park, S. K. (2024). Associations between exposure to air pollution and sex hormones during the menopausal transition. Science of The Total Environment, 908, 168317. https://doi.org/10.1016/j.scitotenv.2023.168317. Wang, X., Karvonen-Gutierrez, C. A., Gold, E. B., Derby, C., Greendale, G., Wu, X., Schwartz, J., and Park, S. K. (2022). Longitudinal Associations of Air Pollution With Body Size and Composition in Midlife Women: The Study of Women’s Health Across the Nation. Diabetes Care 1 November 2022; 45 (11): 2577–2584. https://doi.org/10.2337/dc22-0963. Wang, Y., Qiu, X., Wei, Y., and Schwartz, J. D. (2023). Long-term exposure to ambient PM2.5 and hospitalizations for myocardial infarction among US residents: A difference-in-differences analysis. Journal of the American Heart Association, 12, e029428. https://doi.org/10.1161/JAHA.123.029428. Wei, Y., Coull, B., Koutrakis, P. et al. (2021). Assessing additive effects of air pollutants on mortality rate in Massachusetts. Environmental Health 20, 19. https://doi.org/10.1186/s12940-021-00704-3. Wei, Y., Danesh-Yazdi, M., Ma, T., Castro, E., Liu, C. S., Qiu, X., Healy, J., Vu, B. N., Wang, C., Shi, L., and Schwartz, J. (2023). Additive effects of 10-year exposures to PM2.5 and NO2 and primary cancer incidence in American older adults. Environmental Epidemiology, 7(4). https://doi.org/10.1097/EE9.0000000000000265. Wei, Y., Qiu, X., Sabath, M. B., Danesh-Yazdi, M., Yin, K., Li, L., Peralta, A. A., Wang, C., Koutrakis, P., Zanobetti, A., Dominici, F., and Schwartz, J. (2022). Air Pollutants and Asthma Hospitalization in the Medicaid Population. American Journal of Respiratory and Critical Care Medicine, 205(9). https://doi.org/10.1164/rccm.202107-1596OC. Wei, Y., Qiu, X., Danesh-Yazdi, M., Shtein, A., Shi, L., Yang, J., Peralta, A. A., Coull, B. A., and Schwartz, J. D. (2022). The impact of exposure measurement error on the estimated concentration–response relationship between long-term exposure to PM2.5 and mortality. Environmental Health Perspectives, 130(7), 077006. https://doi.org/10.1289/EHP10389. Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Zanobetti, A., Dominici, F., and Schwartz, J. D. (2020). Causal Effects of Air Pollution on Mortality Rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. https://doi.org/10.1093/aje/kwaa098. Wei, Y., Danesh-Yazdi, M., Di, Q., et al. (2021). Emulating causal dose-response relations between air pollutants and mortality in the Medicare population. Environmental Health, 20, 53. https://doi.org/10.1186/s12940-021-00742-x. Weinberger, K. R., Wu, X., Sun, S., Spangler, K. R., Nori-Sarma, A., Schwartz, J., Requia, W., Sabath, B. M., Braun, D., Zanobetti, A., Dominici, F., and Wellenius, G. A. (2021). Heat warnings, mortality, and hospital admissions among older adults in the United States. Environment International, 157, 106834. https://doi.org/10.1016/j.envint.2021.106834. Wen, J., and Burke, M. (2022). Lower test scores from wildfire smoke exposure. Nature Sustainability, 5, 947-955. https://doi.org/10.1038/s41893-022-00956-y. Wu, X., et al. (2020). Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly. Science Advances, 6, eaba5692. https://doi.org/10.1126/sciadv.aba5692. Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., and Dominici, F. (2020). Exposure to air pollution and COVID-19 mortality in the United States. medRxiv 2020.04.05.20054502 https://doi.org/10.1101/2020.04.05.20054502. Xi, Y., Richardson, D. B., Kshirsagar, A. V., et al. (2022). Effects of short-term ambient PM2.5 exposure on cardiovascular disease incidence and mortality among U.S. hemodialysis patients: a retrospective cohort study. Environmental Health, 21, 33. https://doi.org/10.1186/s12940-022-00836-0. Yitshak-Sade, M., Shi, L., Colicino, E., Amini, H., Schwartz, J. D., Di, Q., and Wright, R. O. (2023). Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. Environmental Pollution, 320, 121056. https://doi.org/10.1016/j.envpol.2023.121056. Yitshak-Sade, M., Shi, L., Colicino, E., Amini, H., Schwartz, J. D., Di, Q., and Wright, R. O. (2021). Long-term air pollution exposure and diabetes risk in the elderly population. medRxiv. https://doi.org/10.1101/2021.09.09.21263282. Yoo, E.-H., Cooke, A., and Eum, Y. (2023). Examining the geographical distribution of air pollution disparities across different racial and ethnic groups: Incorporating workplace addresses. Health & Place, 84, p.103112. https://doi.org/10.1016/j.healthplace.2023.103112. Yoo, E.-H., Roberts, J. E., Eum, Y., Li, X., Chu, L., Wang, P., and Chen, K. (2023). Short-term exposure to air pollution and mental disorders: A case-crossover study in New York City. Environmental Research: Health, 1(1), 015001. https://doi.org/10.1088/2752-5309/ac6439. Yuan, K., Sun, F., Zhang, Y., Du, Y., Wu, L., Ge, Y., Zhang, Z., Cao, W., and Sun, S. (2023). Maternal exposure to ozone and risk of gestational hypertension and eclampsia in the United States. Science of The Total Environment, 872, 162292. https://doi.org/10.1016/j.scitotenv.2023.162292. Zhang, H., Shi, L., Ebelt, S. T., D’Souza, R. R., Schwartz, J. D., Scovronick, N., and Chang, H. H. (2023). Short-term associations between ambient air pollution and emergency department visits for Alzheimer’s disease and related dementias. Environmental Epidemiology, 7(1), e237. https://doi.org/10.1097/EE9.0000000000000237. Zheng, Y., McElrath, T., Cantonwine, D., and Hu, H. (2023). Longitudinal associations between ambient air pollution and angiogenic biomarkers among pregnant women in the LIFECODES study, 2006–2008. Environmental Health Perspectives, 131(8), 087005. https://doi.org/10.1289/ehp11909. Zhong, C., Wang, R., Morimoto, L. M., et al. (2023). Outdoor artificial light at night, air pollution, and risk of childhood acute lymphoblastic leukemia in the California Linkage Study of Early-Onset Cancers. Nature: Sci Rep, https://doi.org/10.1038/s41598-022-23682-z.