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Abstract 11 

We estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, 12 

simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to 13 

global geophysically based satellite-derived PM2.5 estimates.  Aerosol optical depth from multiple 14 

satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was 15 

combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using 16 

ground-based sun photometer (AERONET) observations for 1998-2014.  The GWR predictors included 17 

simulated aerosol composition and land use information.  The resultant PM2.5 estimates were highly 18 

consistent (R2=0.81) with out-of-sample cross-validated PM2.5 concentrations from monitors.  The global 19 

population-weighted annual average PM2.5 concentrations were three-fold higher than the 10 μg/m3 20 

WHO guideline, driven by exposures in Asian and African regions.  Estimates in regions with high 21 

contributions from mineral dust were associated with higher uncertainty, resulting from both sparse 22 

ground-based monitoring, and challenging conditions for retrieval and simulation.  This approach 23 

demonstrates that the addition of even sparse ground-based measurements to more globally 24 

continuous PM2.5 data sources can yield valuable improvements to PM2.5 characterization on a global 25 

scale. 26 

 27 

 28 

 29 

 30 
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1. Introduction 41 

Ambient fine particulate matter (PM2.5) concentrations contribute significantly to global disease burden, 42 

causing 3 million premature deaths in 20131.  Satellite observations, simulations and ground monitors 43 

provide insight into global PM2.5 exposure, but availability and quality of these data sources vary 44 

regionally.  Exposure assignments, such as for the Global Burden of Disease2 (GBD), would benefit from 45 

more sophisticated methods to combine these sources into a unified best-estimate.  Geophysical 46 

relationships between aerosol optical depth (AOD) and PM2.5 simulated using Chemical Transport 47 

Models (CTM) have allowed surface PM2.5 to be globally estimated from satellite AOD observations3, but 48 

underutilize the insight that ground-based monitors can provide.  Statistical methods, such as Land Use 49 

Regression and Geographically Weighted Regression (GWR), have been effective at combining the 50 

spatial coverage of satellite observations with the accuracy of ground-based monitors where monitor 51 

density is high, such as in North America4, China5 and Europe6.  The global paucity of ground-based 52 

monitors has traditionally restricted application of these methods on a larger scale. 53 

Major advances in satellite remote sensing include new retrieval algorithms with high accuracy, long-54 

term stability, and high resolution7-13.  The ground-based AERONET sun photometer network14 offers 55 

long-term globally distributed AOD measurements that provide insight into the relative skill of these 56 

retrieval algorithms.  A method has been demonstrated of combining geophysical satellite-derived PM2.5 57 

estimates with GWR over North America to draw on the strengths of all three PM2.5 information sources; 58 

this approach retained consistent agreement (R2=0.78) at cross-validation sites even when 70% of sites 59 

were withheld, suggesting this approach might be extended to regions with only sparse PM2.5 60 

monitoring15. 61 

Here we present and evaluate a global framework based on that combined approach.  We evaluate the 62 

retrieved and simulated total column AOD from numerous sources using AERONET to produce a globally 63 

continuous AOD field based on the relative uncertainty of each source.  We relate AOD to PM2.5 64 

geophysically, using their simulated relationship in combination with the CALIOP space-borne lidar16.   65 

Globally distributed, ground-based monitors are used to predict and account for the residual bias in the 66 

combined PM2.5 estimates through GWR, and the results are tested for independence.  This work 67 

represents a step forward in both understanding sources of bias associated with satellite-derived PM2.5 68 

estimates, as well as a major improvement in characterization of global PM2.5 concentrations. 69 

 70 

2. Sources of Information: Instrumentation, Retrieval Algorithms and Simulation 71 

 72 

Passive Satellite Instruments 73 

We used AOD retrieved from four ‘passive’ satellite instruments that observe backscattered solar 74 

radiation. 75 
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Twin MODerate resolution Imaging Spectroradiometer (MODIS) instruments reside onboard the polar-76 

orbiting Terra and Aqua satellites, launched in 2000 and 2002, respectively.  With a broad swath width 77 

of 2330 km, each instrument provides near-global daily coverage at 36 spectral bands between 0.412 78 

μm and 14.5 μm with a nadir spatial resolution of 250 m to 1 km, depending on spectral channel.  The 79 

MODIS Collection 6 release improves the calibration to correct for sensor degradation, allowing more 80 

consistent retrievals throughout their lifetime to date17. 81 

The Multi-angle Imaging SpectroRadiometer (MISR) instrument, also onboard the Terra satellite, 82 

provides nine views of each 275 m to 1.1 km nadir resolution pixel, at angles ranging from nadir to 70.5° 83 

fore and aft in four spectral bands between 0.446 μm and 0.866 μm.   The MISR instrument swath width 84 

of ~380 km takes about a week for complete global coverage at mid-latitudes, and has demonstrated 85 

spectral stability throughout its lifetime18, 19. 86 

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument was operational from 1997-2010.  87 

SeaWiFS’ 1500 km swath provided near-daily global observation in 8 spectral bands between 0.402 and 88 

0.885 μm with a nadir spatial resolution of 1.1 km.  The radiometric calibration of SeaWiFS was stable 89 

over its lifetime20. 90 

 91 

Passive Retrieval Algorithms 92 

Several AOD retrieval algorithms have been developed from top-of-atmosphere reflectances observed 93 

by these instruments over various surfaces.  Individual algorithms can excel under certain conditions, or 94 

alternatively provide similar quality under others21, 22. 95 

The Collection 6 Dark Target (DT) retrieval algorithm over land7 relates surface reflectances observed at 96 

near-infrared wavelengths, where aerosol scattering effects are reduced, to visible wavelengths using 97 

NDVI-based relationships to represent underlying vegetation and other surface types8.  Observed top-of-98 

atmosphere reflectances over dark surfaces are corrected for absorption by atmospheric gases and 99 

related to AOD, accounting for the effects of aerosol and molecular scattering.  We used 10 km 100 

resolution DT applied to MODIS instruments. 101 

The Deep Blue (DB) algorithm was initially developed for MODIS AOD retrieval over bright surfaces, such 102 

as deserts10.  DB utilizes blue wavelengths, where reduced surface reflectance allows greater sensitivity 103 

to AOD.  DB has been enhanced since its inception to include polarization effects, dynamic and 104 

geolocated surface reflectance, and extended to ‘dark’ land surfaces9.  DB is applied to SeaWiFS23 at 13.5 105 

km resolution and to MODIS at 10 km resolution. 106 

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieval algorithm uses time series 107 

analysis and image processing to derive the surface bidirectional reflectance function at fine spatial 108 

resolution11, 12.  Multiple, single-view passes are combined over up to 16 days to exploit multi-angle 109 

viewing effects.  MAIAC uses empirically tuned, regionally prescribed, aerosol properties following the 110 
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AERONET climatology, and provides AOD at 1 km spatial resolution over land globally from MODIS.  111 

MAIAC was not globally available at the time of this work, but will be in the future. 112 

The MISR retrieval algorithm (v22)24 uses same-scene multi-angular views to simultaneously solve for 113 

surface and atmospheric top-of-atmosphere reflectance contributions, providing AOD retrievals over 114 

land without absolute surface reflectance assumption.  MISR retrieves over both dark and bright 115 

surfaces.  MISR retrievals use multiple aerosol models with different refractive index, particle size and 116 

shape (nonsphericity), allowing for retrieval of aerosol size and type in many conditions13.  MISR 117 

retrievals are applied to the MISR instrument at 17.6 km resolution. 118 

 119 

CALIOP Satellite Instrument 120 

The ‘active’ Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument has provided global 121 

vertical aerosol profiles from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 122 

(CALIPSO) satellite since 200616. CALIOP observes the backscattered radiation from laser pulses it emits 123 

at 532 nm and 1064 nm.  Aerosol extinction profiles (v3.01) are retrieved at a resolution of 30 m vertical 124 

up to 8 km above the surface, and 5 km horizontal. 125 

 126 

GEOS-Chem Chemical Transport Model 127 

We used the GEOS-Chem chemical transport model (http://geos-chem.org; v9-01-03) as an additional 128 

data source for AOD, and to simulate the spatiotemporally varying geophysical relationship between 129 

AOD and PM2.5.  Assimilated meteorology from the NASA Goddard Earth Observation System (GEOS) 130 

drives the simulations for 2004-2012 (GEOS-5.2) and 1998-2014 (GEOS5.7).  Nested GEOS-Chem 131 

simulations for North America25, 26, Europe27 and East Asia28 used GEOS-5.2 at 0.5° × 0.67° and 47 vertical 132 

levels.  Our global simulations at 2° × 2.5° used GEOS-5.2 when available and otherwise GEOS-5.7.  The 133 

use of GEOS-5.2 allowed for higher resolution within the nested regions.  Each aerosol type simulated 134 

with GEOS-5.7 was scaled by its mean monthly ratio with the GEOS-5.2 driven simulation based on a 135 

2004-2012 overlap period.  The top of lowest model layer is approximately 100 m. 136 

The GEOS-Chem aerosol simulation includes sulfate-nitrate-ammonium29, 30, primary31-33 and secondary 137 

carbonaceous aerosols34-36, mineral dust37, and sea-salt38.  Aerosol optical properties were determined 138 

from Mie calculations of log-normal size distributions, growth factors and refractive indices, based on 139 

the Global Aerosol Data Set (GADS) and aircraft measurements39-41.  We reduced by half the AOD to 140 

PM2.5 relationship for mineral dust to compensate for its overly vigorous wet deposition in the 141 

simulation41.  Details of the GEOS-5.2-driven simulation are described in Philip et al.42, and of the GEOS-142 

5.7-driven simulation in Boys et al.43. 143 

 144 

AERONET 145 
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The Aerosol Robotic Network (AERONET) is a globally distributed ground-based network of CIMEL sun 146 

photometers14 that provide multi-wavelength AOD measurements.  AERONET measurements apply the 147 

Beer-Lambert-Bouger law to observed direct beam radiation to calculate spectral AOD with a low 148 

uncertainty of <0.0244, making it invaluable for evaluation of both simulated and satellite-retrieved AOD.  149 

We used level 2.0 of version 2 data. 150 

 151 

Surface Monitors 152 

We used surface monitor PM2.5 data collected for the Global Burden of Disease (GBD)2.  This dataset 153 

combines multi-source, annually representative PM2.5 and PM10 observations from GBD collaborators, 154 

targeted data searches, official networks, literature searches and the WHO ambient air pollution in cities 155 

database.  Observations were collected for the years 2008-2013.  PM10 observations, scaled by nearest 156 

available PM2.5:PM10 ratios, were used in regions without direct PM2.5 measurement as detailed by 157 

Brauer et al.2. 158 

 159 

A summary of the data sources used is given in Supporting Information Table 1. 160 

 161 

3. Methods 162 

 163 

Common calibration and definition of error 164 

We first globally calibrated each AOD source using AERONET observations.  We translated daily AOD 165 

retrievals and simulated values from 1998 to 2014 from their native resolution onto a common 0.1° × 166 

0.1° grid, area-weighting satellite retrievals and linearly interpolating simulated values.  Daily satellite 167 

AOD retrievals were sampled coincidently to within 0.25° of each AERONET location and binned 168 

according to Normalized Difference Vegetation Index (NDVI).  NDVI was used to represent the effects of 169 

seasonally based changes in vegetation.  Ten percent of the data were withheld from each of 100 170 

random draws.  Reduced major axis linear regression determined the line of best fit for the remaining 171 

data.  Median slope and offset of the retrieved or simulated AOD with observed values were treated as 172 

local calibration. 173 

Local calibrations were used to create a global surface for application to the AOD sources, where each 174 

pixel over the global was determined as the weighted average of all AERONET site-specific calibrations.  175 

Weighting factors were represented by the inverse product of Land Cover Similarity (LCS) and distance 176 

squared.  We defined LCS as 177 

 ����,�,� = ∑ 
���,�,� − ���,�
������  [1] 178 
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where the LCS of a global pixel (i,j) with AERONET site (k) was the sum of absolute differences between 179 

land cover type percentages (LTi,j,n and LTk,n) for each land cover category (n) as defined by the MODIS 180 

land cover product45.  Land cover percentages were capped at a maximum of 50% and their absolute 181 

difference given a minimum of 1%.  LCS allowed similar mixtures of land cover to be weighted more 182 

strongly.  Example weighting factors of four AERONET locations are shown in Supporting Information 183 

Figure S1.  The impact of changing land type on weighting factor, often associated with topographical 184 

changes, is visible as deviations from the smooth variation of inverse squared distance.  185 

Residual uncertainty in calibrated AOD was represented by the normalized root mean square difference 186 

(NRMSD) between coincidently sampled AOD at AERONET sites after application of the global bias 187 

correction surface: 188 

 ����� = ����������� ��! " #$���% �&' �()*+,..

���% �&' �
 [2] 189 

Local NRMSD were globally extended using inverse squared distance and LCS, following the approach 190 

used for the local calibration factors. 191 

We also calibrated simulated AOD with AERONET measurements.  Simulated fractional aerosol 192 

composition was applied to each daily AERONET observation and unique calibration terms determined 193 

seasonally for each component, following van Donkelaar et al.27.  Local calibration terms were extended 194 

globally using the inverse squared distance and cross-correlation weighted average of each AERONET 195 

site to each global pixel.  Calibrated, component-specific residual uncertainty was represented by 196 

NRMSD and extended globally also using inverse squared distance and cross-correlation. 197 

 198 

CALIOP-based vertical profile adjustment 199 

We applied CALIOP aerosol extinction vertical profiles (CAL_LID_L2_05kmAPro-Prov-V3-01) to correct 200 

the GEOS-Chem simulation of AOD to near-surface extinction.  Vertical profile adjustments were 201 

determined globally using CALIOP extinction profiles, sampled coincidently in time and space with 202 

simulations over the CALIOP v3.01 period of 2006-2011.  CALIOP vertical profiles were adjusted for 203 

consistent aerosol optical properties with GEOS-Chem using the lidar equation27.  The effect of optical 204 

property differences was generally small.  Simulated fractional aerosol composition was applied to the 205 

CALIOP profiles, and local vertical profile adjustments determined for each climatological month of each 206 

component as the ratio of median CALIOP and simulated near-surface extinction to AOD.  A minimum 207 

AOD column of 0.01 and near-surface extinction of 0.1 km-1 were required.  Local adjustments were 208 

spatially smoothed using a moving median over a 30° latitude and 45° longitude window. 209 

 210 

Estimation of PM2.5 from satellite and simulation 211 
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We related daily calibrated AOD values from each source on a 0.1° grid to near surface PM2.5 212 

concentrations using CALIOP-adjusted daily simulated AOD to PM2.5 relationships.  Filters were applied 213 

to exclude AOD and PM2.5 outliers from each source.  Daily values differing from the local mean (within 214 

1° × 1°) by more than the local standard deviation were removed.  Values were removed where local 215 

standard deviations exceeded twice the local mean.  Values were also removed where less than 25% of 216 

local retrievals were successful and above zero.  Monthly mean AOD and PM2.5 surfaces for each source 217 

were calculated from these daily values and the same filters applied to the monthly surfaces.  PM2.5 was 218 

treated at 35% relative humidity to match common standardized measurement procedures. 219 

Monthly mean values with less than 50% coverage within the surrounding five degrees were removed.  220 

Missing AOD and PM2.5 estimates within areas with more than 50% coverage were approximated using 221 

the interpolated ratio with the same data source during other years of the same month, or barring that, 222 

the interpolated ratio with simulated values during the same time period.  Monthly AOD and PM2.5 223 

values from all N sources were combined using a weighted average, weighted by the product of the 224 

inverse residual AOD NRMSD, the inverse absolute percent difference between calibrated and 225 

uncalibrated AOD (ΔAODadj/AOD), and the local data density (Nobs), such that for AOD: 226 

 227 
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  [3] 228 

ΔAODadj,n and AODn were set to a minimum of 0.01.  Nobs was set to a maximum of 5 observations per 229 

month for the purpose of weighting, even when more observations were included in the calculation.  230 

Squaring Nobs penalizes sparse observation density.  Values exceeding three standard deviations of those 231 

within the surrounding 1° × 1° were replaced via linear interpolation. 232 

Similar weighting was used to combine the monthly PM2.5 estimates: 233 

 234 
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  [4] 235 

Where available, spatial information from the 1 km MAIAC AOD retrieval was then incorporated by 236 

applying the climatology of its retrieved relative variation between 0.01° and 0.1°.  Where MAIAC was 237 

unavailable, monthly AOD and PM2.5 were linearly interpolated onto a 0.01° grid.   238 
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Global Geographically Weighted Regression (GWR) 239 

We predicted and accounted for the bias in the annual mean of these geophysically-based SAT PM2.5 240 

estimates using GWR46.  GWR is a statistical technique that allows spatial variation in the predictor 241 

coefficients of a linear regression-based predictor-response relationship, making it possible to predict 242 

using the spatial structure of both predictor variables and their coefficients.  We fitted our GWR model 243 

coefficients at 1° × 1° intervals using PM2.5 measured with ground-based monitors (GM), following the 244 

form: 245 

 (GM PM2.5 – SAT PM2.5) = β1DST + β2SNAOC + β3ED×DU [5] 246 

where β1 to β3 represented spatially varying predictor coefficients.  ED is the log of the elevation 247 

difference between the local elevation and the mean elevation within the simulation grid cell, according 248 

to the 1'×1' ETOPO1 Global Relief Model available from the National Geophysical Data Center 249 

(http://www.ngdc.noaa.gov/mgg/global/seltopo.html).  DU is the inverse distance to the nearest urban 250 

land surface, based upon the 1' resolution MODIS Land Cover Type Product (MCD12Q1)45.  251 

Compositional concentrations for mineral dust (DST) and the sum of sulfate, nitrate, ammonium and 252 

organic carbon (SNAOC) were represented by simulated relative contributions of each species applied to 253 

SAT PM2.5, following Philip et al.42, i.e. by weighting the near-surface aerosol concentration by the 254 

simulated compositional contribution of each species.  We interpolated all predictors onto a common 255 

0.01° grid. 256 

The weighting of each ground-based monitor to the local GWR regression was based on the squared 257 

inverse distance of the monitor to each GWR grid cell.  The greater of 100 km or the third nearest 258 

monitor distance was used for the minimum distance to avoid overfitting.  We scaled the weighting of 259 

PM10-based observations by half due to uncertainty associated with these values.  Ten additional GWR 260 

bias corrections were performed for cross validation; each withheld ten percent of sites randomly 261 

chosen from within each GBD47 defined region (Supporting Information Figure S2). 262 

We used gridded population estimates at 2.5' × 2.5' resolution from the Socioeconomic Data and 263 

Applications Center48 for 2010 to further interpret our PM2.5 estimates. 264 

 265 

4. Results and Discussion 266 

Figure 1 (top and bottom rows) shows mean AOD from each data source for 2001-2010.  A broad level 267 

of similarity is apparent across all data sources, with the highest values occurring over regions of dust, 268 

biomass burning and anthropogenic activity.  Sampling differences affect values in tropical biomass 269 

burning regions. 270 

Figure 2 shows mean contributions of each AOD source to the combined product.  Aqua- and Terra-271 

based MODIS retrievals were weighted separately, for a total of nine AOD sources, although only Terra-272 

based MODIS retrievals are shown in this figure.  An individual source of average quality would 273 

therefore have a weighting of 1/9 (~10%).  All sources demonstrated value, excelling under conditions 274 
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best suited to their individual strengths.  The MAIAC and MISR retrievals excelled under difficult surface 275 

conditions, such as mountainous and arid regions.  MODIS DB was used over broad desert regions, such 276 

as the Sahara, and biomass burning regions of South America and Africa.  SeaWiFS DB was weighted less 277 

heavily, and displayed some similarity to MODIS DB, but reduced in part by less frequent sampling.  DT 278 

was used in the vegetatively rich regions of Central America, Central Africa and Southeast Asia.  279 

Simulated AOD was highly valuable in northern regions, where seasonal snow-cover inhibit passive AOD 280 

retrieval, and in tropical south-eastern Asia, where cirrus cloud-cover reduces satellite sampling.  281 

Combined AOD is more consistent than individual AOD data sources at sites with ground-based 282 

measurements of PM2.5 (r2=0.32-0.39 vs. r2=0.45) and at sites that also include PM2.5 estimated from 283 

PM10 (r2=0.35-0.42 vs r2=0.49). 284 

Figure 1 (middle) shows the combined 2001-2010 multi-year mean AOD.  The top panel of Figure 3 285 

shows the same data on a logarithmic scale proportional to the PM2.5 estimates shown in the bottom 286 

panel).  The two logarithmic color scales differ by a factor of 52 μg/m3, equal to the global average 287 

simulated ratio of PM2.5 to AOD.  Relative differences in spatial variation represent deviations from 288 

global mean conditions of the aerosol vertical profile and optical properties.  Source regions, such as 289 

deserts and industrial areas, show greater PM2.5 values compared to AOD reflecting enhanced near-290 

surface aerosol concentrations.  Northern regions tend to have less surface PM2.5 compared to aerosol 291 

aloft. 292 

Figure 4 shows the net impact of individual predictors on the GWR bias correction to the annual mean 293 

PM2.5 estimates.  Urban Distance × Elevation Difference shows the largest amount of spatial 294 

heterogeneity owing to predictor variation.   PM2.5 components are associated with large scale changes 295 

that likely represent bias in the AOD to PM2.5 relationship rather than bias in AOD since AOD was 296 

calibrated with AERONET.  Mineral Dust is regionally associated with both reductions and 297 

enhancements, potentially tied to variability in the simulated accuracy of wet deposition41 that may 298 

affect the accuracy of simulated composition.  Bias associated with other PM2.5 components shows more 299 

variation, including reductions over parts of East Asia and Eastern Europe, and increases around some 300 

cities especially in South America and western North America. 301 

Figure 5 (middle) shows the combined impact of all predictors on the annual mean geophysically based 302 

satellite-derived PM2.5 for 2010.  Changes associated with mineral dust remained prevalent, overlaid 303 

with regional changes associated with other composition components.  Fine scale variability (Supporting 304 

Information Figure S5) is associated with Elevation and Urban Distance.  Agreement between the GWR-305 

Predicted and Observed bias was weaker when including PM10-based values (R2=0.44) versus those sites 306 

directly measuring PM2.5 (R2=0.54).  A slope of 0.6 suggests that the net bias may be underestimated.   307 

Figure 5 also shows comparisons of ground monitors with initial, annual mean geophysically-based 308 

satellite-derived PM2.5 (top) and GWR-adjusted satellite-derived PM2.5 (bottom).  Addition of the 309 

predicted bias significantly improves agreement with both the entire in situ dataset (R2=0.74 vs R2=0.58) 310 

and with the direct PM2.5 observations (R2=0.85 vs R2=0.67).  Agreement of the GWR-adjusted estimates 311 

at cross validation sites was similar when including PM10-based monitors (R2=0.73) and at the direct 312 

PM2.5 locations (R2=0.81), suggesting the impact of overfitting is small.  Comparison between these 313 



12 

 

annual mean values include any residual impact of sampling.  The weaker overall relationship with PM2.5 314 

inferred from PM10 may suggest caution in the use of PM10 for PM2.5 exposure estimates, or alternatively 315 

the higher density of PM10 monitors in more uncertain regions, such as India. 316 

Table 1 gives mean population-weighted PM2.5 concentration for the socioeconomic-geographic regions 317 

of GBD.  The larger global population-weighted mean PM2.5 concentration (32.6 μg/m3) compared with 318 

that at PM2.5 monitor locations (25.1 μg/m3) highlights the need for additional monitoring.  Regional 319 

differences between the GWR-adjusted and prior GBD2013 estimates are apparent, with a root mean 320 

square difference of regional mean GWR-adjusted values at PM2.5-monitor locations of 7.0 μg/m3 versus 321 

12.8 μg/m3 for the GBD2013 estimates.  North America, Central Europe and Eastern Europe have low 322 

levels of within-region uncertainty compared to PM2.5 monitors (bias: -0.7 to 0.4 μg/m3, variance: 2.1 to 323 

5.7 μg/m3), benefitting from well-characterized emission inventories that drive AOD to PM2.5 324 

relationships as well as numerous ground-based monitors for GWR adjustment.  Parts of Asia and Latin 325 

America, by contrast, have relatively high levels of regional uncertainty (bias: up to 11.6 μg/m3, variance: 326 

up to 33.9 μg/m3).  This increased absolute uncertainty results in part from the higher PM2.5 327 

concentrations in many Asian regions.  Lower in situ monitor density may also play a role, suggesting 328 

increased uncertainty in GWR-adjusted values for sparsely observed regions. 329 

According to the GWR-adjusted satellite-derived PM2.5 estimates, the global population-weighted annual 330 

average PM2.5 concentration of 32.6 μg/m3 is three times higher than the 10 μg/m3 WHO guideline, 331 

driven by high concentrations in several Asian and African regions.  Few regions have population-332 

weighted mean concentrations below the WHO guideline, with only Australasia, the Caribbean, Tropical 333 

Latin America, High Income North America, and Oceania below this level.  South and East Asia contain 334 

the highest population-weighted PM2.5 concentrations (50.6 μg/m3 and 46.6 μg/m3, respectively), 335 

influenced by both mineral dust and anthropogenic emissions.  West Sub-Saharan Africa also had high 336 

population-weighted PM2.5 concentrations (39.5 μg/m3), due to the combined effects of mineral dust 337 

and biomass burning. 338 

Figure 6 shows the distribution of GWR-adjusted satellite-derived PM2.5 concentrations for 2010 339 

according to population and population density for the six most populated GBD regions and globally.  340 

Typical ambient concentrations in South Asia and East Asia vary, from about 20-70 μg/m3.  North 341 

Africa/Middle East uniquely had its highest PM2.5 concentrations in its least populated regions due to 342 

substantial mineral dust concentrations near the sparsely populated Sahara Desert.  Average PM2.5 343 

concentrations in the least densely populated regions of South Asia and East Asia exceeded those in the 344 

most densely populated regions of North America.  A small proportion of the global population (13%) 345 

lived where concentrations are below the 10 μg/m3 WHO guideline.  Regionally, 52% of the High Income 346 

North America population live below the WHO guideline, compared to 1% or less of South Asia, East 347 

Asia, and North Africa/Middle East. 348 

Next Steps 349 

Here we presented a globally-applicable method that brought together satellite retrievals, 350 

geophysically-driven simulations, and ground-based observations to improve the representation of 351 
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PM2.5 at spatial scales commensurate with population density.  Eight different satellite AOD products 352 

were combined for broad global accuracy at 0.1° resolution.  Information at 0.01° was obtained from the 353 

MAIAC retrieval and from the associations of PM2.5 enhancements with topographic depressions.  These 354 

multiple information sources enabled predictive skill worldwide despite a dearth of ground-based 355 

monitors outside High Income North America, Western Europe, and recently, China.  A more integrated 356 

ground-based PM2.5 and AOD monitoring strategy, such as the Surface PARTiculate mAtter Network 357 

(SPARTAN)49, would offer value for independent evaluation of the AOD-to-PM2.5 relationship.  Higher 358 

temporal availability of global PM2.5 monitors would allow better GWR representation of seasonally 359 

driven bias, such as that associated with mineral dust and biomass burning.  Regions heavily influenced 360 

by mineral dust present a challenge for satellite retrievals, simulation, and ground measurements.  361 

Future simulations should incorporate improved dust emission schemes (e.g. Ridley et al.41) to reduce 362 

uncertainty.  Higher resolution simulations may also better represent finer-scale features of the 363 

geophysically based AOD to PM2.5 relationship.  The approach presented here allows for future 364 

evaluation and inclusion of numerous AOD retrievals, such as from emerging high-resolution products 365 

(e.g. Visible Infrared Radiometer Suite (VIIRS)50, 3 km MODIS DT51), as well as the inclusion of additional 366 

ground-based observations as they become available.  Alternative statistrical calibration methods, such 367 

as a Bayesian Hierarchical Framework52, 53, may offer additional benefits. 368 

The annual mean global GWR-adjusted PM2.5 estimates at 0.01° × 0.01° are freely available as a public 369 

good from the Dalhousie University Atmospheric Composition Analysis Group website at: 370 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140, or by contacting the authors.  371 
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Table 1:  Population-weighted mean PM2.5 (μg/m3) by Global Burden of Disease (GBD) regiona according to GBDb, satellite (SAT), GWR-adjusted 381 

satellite (GWR SAT) for 2010.  Bracketed terms provide the regional normal distribution of uncertainty (N(bias,variance)) compared to local in 382 

situ observations. 383 

      At PM2.5 monitor locations At PM2.5 and PM10 monitor locations 

Region 

Population 

[million 

people] 

SAT 

PM2.5 

GWR 

SAT 

PM2.5 

GBDb 

PM2.5 

Dust 

[%] 
SAT PM2.5 

GWR SAT 

PM2.5 
GBDb PM2.5 

In Situ 

PM2.5 

N 

[#] 

SAT 

PM2.5 

GWR SAT 

PM2.5 
GBDb PM2.5 

In Situ 

PM2.5 

N 

[#] 

Global 6309 36.3 32.6 31.3 25 20.8 (3.7,11.5) 25.1 (1.3,7.9) 24.0 (2.2,11.4) 26.5 1854 23.9 (1.8,12.4) 27.2 (-0.3,9.3) 27.9 (1.1,12.1) 26.6 4079 

Asia Pacific, High Income 169 17.6 16.9 20.2 18 17.1 (4.1,3.4) 18.9 (1.7,3.5) 22.5 (-0.3,6.1) 20.1 11 21.0 (-0.5,3.9) 22.3 (-1.7,4.1) 26.0 (-3.2,5.4) 20.3 68 

Asia, Central 79 25.9 29.4 21.8 65 10.0 (8.6,25.8) 31.6 (3.2,16.4) 13.2 (-5.3,33.1) 47.3 8 8.0 (16.0,21.4) 31.6 (7.9,16.2) 10.3 (9.6,27.9) 43.1 18 

Asia, East 1363 59.8 46.6 53.0 17 59.8 (11.3,28.3) 61.5 (11.6,19.1) 59.1 (14.9,22.2) 72.1 97 60.9 (-4.4,25.3) 60.0 (-3.5,17.9) 60.3 (-2.1,21.8) 57.5 401 

Asia, South 1545 52.3 50.6 43.1 22 58.3 (29.1,36.1) 77.8 (8.9,33.9) 55.2 (36.8,36.7) 80.2 18 49.1 (-2.6,22.3) 55.3 (-6.5,20.6) 49.3 (-2.1,23.0) 51.4 203 

Asia, Southeast 575 17.1 17.2 16.2 5 21.4 (18.8,16.4) 26.0 (6.0,15.9) 21.9 (19.9,17.0) 27.2 62 23.0 (8.4,18.8) 26.3 (0.9,15.4) 25.0 (8.4,20.2) 25.2 117 

Australasia 23 2.5 4.1 7.0 17 2.4 (3.9,1.5) 5.9 (1.3,2.2) 8.2 (-0.6,2.8) 6.1 44 2.4 (3.7,1.3) 5.8 (1.2,2.0) 8.4 (-0.9,2.6) 6.0 70 

Caribbean 33 5.4 5.7 10.4 34 - - - - 0 4.9 (-,-) 8.5 (-,-) 10.2 (-,-) 18.0 1 

Europe, Central 119 23.3 21.9 17.5 29 25.1 (0.3,8.7) 25.5 (-0.7,5.7) 18.9 (6.5,7.6) 25.3 166 24.0 (0.4,8.5) 25.1 (-0.7,6.6) 18.7 (6.4,7.9) 24.8 511 

Europe, Eastern 199 19.2 18.1 14.6 30 11.1 (-2.2,6.5) 10.5 (-0.9,5.6) 14.7 (-3.0,7.2) 9.6 26 13.2 (-2.3,6.1) 12.3 (-1.1,5.4) 14.6 (-2.4,6.9) 11.3 31 

Europe, Western 380 14.7 13.7 15.2 19 15.1 (0.7,5.1) 15.9 (0.4,3.3) 17.1 (-0.3,4.0) 16.5 535 14.7 (0.8,5.1) 15.9 (0.1,3.7) 17.0 (-0.3,4.3) 16.1 1307 

Latin America, Andean 52 8.3 15.1 10.7 1 9.0 (28.6,15.7) 33.6 (3.6,11.3) 21.2 (17.3,13.5) 41.9 4 8.1 (15.9,12.6) 27.1 (4.9,9.5) 17.7 (12.1,11.0) 34.7 16 

Latin America, Central 231 6.8 10.8 12.1 12 8.4 (14.8,5.3) 18.1 (5.9,8.1) 17.1 (8.9,6.6) 22.5 17 8.0 (13.4,5.0) 16.7 (4.5,7.5) 16.0 (7.6,5.3) 21.3 41 

Latin America, Southern 60 6.6 10.9 11.9 37 8.5 (28.5,22.8) 25.0 (6.2,15.5) 31.5 (17.5,30.1) 29.6 29 8.4 (20.5,19.9) 20.0 (2.9,14.8) 23.6 (12.4,23.8) 25.4 52 

Latin America, Tropical 189 6.8 9.0 14.1 3 8.5 (7.0,5.6) 16.1 (-0.2,5.0) 28.5 (-9.8,7.1) 17.0 19 8.6 (6.0,5.0) 14.6 (0.1,4.5) 35.7 (-10.9,10.2) 15.5 72 

North Africa/Middle East 432 30.0 30.2 29.0 81 30.7 (6.3,16.6) 38.4 (-0.8,16.0) 43.0 (1.0,14.0) 37.5 8 29.7 (9.3,14.2) 38.0 (2.6,12.0) 40.7 (15.1,17.2) 34.9 117 

North America, High Income 326 7.4 9.2 11.8 7 7.9 (2.3,2.5) 10.0 (0.4,2.1) 13.8 (-1.1,3.5) 10.1 791 7.6 (2.8,3.2) 10.0 (0.8,2.8) 13.4 (-0.5,3.9) 10.2 1020 

Oceania 6 1.6 1.6 5.5 0 - - - - 0 - - - - 0 

Sub-Saharan Africa, Central 99 21.9 21.5 15.6 9 - - - - 0 - - - - 0 

Sub-Saharan Africa, East 335 16.6 16.2 13.7 30 - - - - 0 - - - - 0 

Sub-Saharan Africa, Southern 66 8.5 19.0 12.5 10 10.8 (21.8,14.7) 36.6 (-0.6,10.2) 19.3 (15.9,11.3) 40.2 14 10.5 (23.8,17.3) 34.7 (2.5,14.4) 21.5 (16.1,14.7) 52.3 29 

Sub-Saharan Africa, West 315 57.1 39.5 27.7 73 60.7 (-25.8,6.6) 47.4 (-10.6,11.3) 33.1 (2.8,3.9) 33.0 5 60.7 (-25.8,6.6) 47.4 (-10.6,11.3) 33.1 (2.8,3.9) 33.0 5 

aLim et al., 201247; Figure S1 384 
bBrauer et al., 20162. 385 
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 386 

Figure 1:  Mean aerosol optical depth (AOD) over land for 2001-2010, by data source.  Retrieval algorithm name, where applicable, is given in the 387 

lower left of each panel.  The associated instrument is indicated in brackets.  MODIS corresponds to the average of Aqua- and Terra-based 388 

retrievals.  The middle panel shows the combination of all data sources after calibrating with AERONET.  Grey denotes missing data or water. 389 
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 390 

Figure 2:  Mean contribution of each data source to the combined PM2.5 estimate from 2001-2010.  Retrieval algorithm name, where applicable, 391 

is given in the lower left of each panel.  Instrument is indicated in brackets, with average weighting of valid retrievals below.  Values in the 392 

bottom-left of each panel indicate the decade mean weighting at locations with available data.  MODIS corresponds to Terra-based retrievals 393 

only.  Grey denotes missing data or water.  A version with linear color-scale is available as Supporting Information Figure S3.394 
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 395 

Figure 3:  AOD and PM2.5 for 2001-2010.  The logarithmic PM2.5 scale (bottom) is directly proportional to 396 

the logarithmic AOD scale, obtained by normalizing the global average of PM2.5 to that of AOD.  Grey 397 

denotes water. 398 

  399 
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 400 

Figure 4:  Net impact of individual predictors on the geographically weighted regression estimate of bias 401 

in satellite-derived PM2.5 for 2010.  Grey denotes water.  Percentage impact is plotted in Supporting 402 

Information Figure S4.  403 
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 404 

Figure 5: Satellite-derived PM2.5 (top), predicted bias (middle), and adjusted satellite-derived PM2.5 405 

(bottom) for 2010.  In situ values are for the year of observation of each monitor, with years between 406 

2008-2013.  Point locations correspond to individual monitors, with black dots representing direct PM2.5 407 

observations and grey dots representing PM2.5 approximated from PM10.  Colored outlines of point 408 

locations provide observed value.  Grey space denotes water.  The right column plots coincident annual 409 

mean in situ and satellite values.  Annotations include the coefficient of variation at all points and at 410 

cross-validation points (R2=All points (CV points)), normal distribution of uncertainty (N(bias,variance)), 411 

line of best fit (y) and number of comparison points (N).  Black dots/text correspond to direct PM2.5 412 

monitors alone.  Grey dots and text additionally include PM2.5 estimated from PM10 monitors. 413 

 414 

  415 



20 

 

 416 

Figure 6:  Distribution of GWR-adjusted satellite-derived PM2.5 concentration for 2010 according to 417 

population and population density within the six most populated GBD regions and globally.  The bottom 418 

panel shows the cumulative distribution of regional, annual mean PM2.5. 419 

  420 



21 

 

5. References 421 

1. Forouzanfar, M. H.; Alexander, L.; Anderson, H. R.; Bachman, V. F.; Biryukov, S., et al. Global, 422 

regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, 423 

and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global 424 

Burden of Disease Study 2013. The Lancet 2015, 86 (10010), 2287-2323. 425 

2. Brauer, M.; Freedman, G.; Frostad, J. J.; van Donkelaar, A.; Martin, R. V., et al. Ambient air 426 

pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 2016, 50 (1), 427 

79-88. 428 

3. van Donkelaar, A.; Martin, R. V.; Brauer, M.; Boys, B. L. Use of Satellite Observations for Long-429 

Term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environ. Health 430 

Perspect. 2015, 123 (2), 135-143. 431 

4. Kloog, I.; Chudnovsky, A. A.; Just, A. C.; Nordio, F.; Koutrakis, P., et al. A new hybrid spatio-432 

temporal model for estimating daily mutli-year PM2.5 concentrations across northeastern USA using 433 

high resolution aerosol optical depth data. Atmos. Environ. 2014, 95, 581-590. 434 

5. Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating ground-level PM2.5 in China using satellite 435 

remote sensing. Environ. Sci. Technol. 2014, 48 (13), 7436-7444. 436 

6. Vinneau, D.; de Hoogh, K.; Bechle, M. J.; Beelen, R.; van Donkelaar, A., et al. Western European 437 

land use regression incorporating satellite- and ground-based measurements of NO2 and PM10. Environ. 438 

Sci. Technol. 2013, 47 (23), 13555–13564. 439 

7. Levy, R. C.; Mattoo, S.; Munchak, L. A.; Remer, L. A.; Sayer, A. M., et al. The Collection 6 MODIS 440 

aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. 441 

8. Levy, R. C.; Remer, L. A.; Mattoo, S.; Vermote, E. F.; Kaufman, Y. J. Second-generation 442 

operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution 443 

Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112 (D13). 444 

9. Hsu, N. C.; Jeong, M. J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R., et al. Enhanced Deep Blue 445 

aerosol retrieval algorithm: The second generation. J. Geophys. Res. 2013, 118, 1–20. 446 

10. Hsu, N. C.; Tsay, S. C.; King, M. D.; Herman, J. R. Deep blue retrievals of Asian aerosol properties 447 

during ACE-Asia. IEEE T. Geosci. Remote 2006, 44 (11), 3180-3195. 448 

11. Lyapustin, A.; Martonchik, J.; Wang, Y. J.; Laszlo, I.; Korkin, S. Multiangle implementation of 449 

atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. 2011, 450 

116. 451 

12. Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S., et al. Multiangle implementation of 452 

atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. 2011, 116. 453 

13. Kahn, R. A.; Gaitley, B. J. An analysis of global aerosol type as retrieved by MISR. Journal of 454 

Geophysical Research: Atmospheres 2015, 120. 455 



22 

 

14. Holben, B. N.; Eck, T. F.; Slutsker, I.; Tanre, D.; Buis, J. P., et al. AERONET - A federated 456 

instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66 (1), 1-457 

16. 458 

15. van Donkelaar, A.; Martin, R. V.; Spurr, R. J. D.; Burnett, R. T. High-resolution satellite-derived 459 

PM2.5 from optimal estimation and geographically weighted regression over North America. Environ. 460 

Sci. Technol. 2015, 49 (17), 10482-10491. 461 

16. Winker, D. M.; Vaughan, M. A.; Omar, A.; Hu, Y.; Powell, K. A. Overview of the CALIPSO mission 462 

and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology 2009, 26, 2310-463 

2323. 464 

17. Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A., et al. Towards a long-term 465 

global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and 466 

VIIRS-observed reflectance. Atmos. Meas. Tech. 2015, 8, 4083-4110. 467 

18. Zhang, J.; Reid, J. S. A decadal regional and global trend analysis of the aerosol optical depth 468 

using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products. Atmos. Chem. 469 

Phys. 2010, 10, 10949–10963. 470 

19. Bruegge, C. J.; Diner, D. J.; Kahn, R. A.; Chrien, N.; Helmlinger, M. C., et al. The MISR radiometric 471 

calibration process. Remote Sens. Environ. 2007, 107, 2-11. 472 

20. Eplee, R. E.; Meister, G.; Patt, F. S.; Franz, B. A.; McClain, C. R., Uncertainty Assessment of the 473 

SeaWiFS On-Orbit Calibration. In Earth Observing Systems Xvi, Butler, J. J.; Xiong, X.; Gu, X., Eds. Proc. of 474 

SPIE: 2011; Vol. 8153, p 815310. 475 

21. Sayer, A. M.; Munchak, L. A.; Hsu, N. C.; Levy, R. C.; Bettenhausen, C., et al. MODIS Collection 6 476 

aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and "merged" data sets, and 477 

usage recommendations. Journal of Geophysical Research: Atmospheres 2014, 119, 13,965-13,989. 478 

22. Petrenko, M.; Ichoku, C. Coherent uncertainty analysis of aerosol measurements from multiple 479 

satellite sensors. Atmos. Chem. Phys. 2013, 13, 6777–6805. 480 

23. Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Zhang, J. Global and regional evaluation 481 

of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos. Meas. Tech. 2012, 5, 1761–482 

1778. 483 

24. Martonchik, J. V.; Kahn, R. A.; Diner, D. J., Retrieval of Aerosol Properties over Land Using MISR 484 

Observations. In Satellite Aerosol Remote Sensing Over Land, Kokhanovsky, A. A.; Leeuw, G. d., Eds. 485 

Springer: Berlin, 2009; pp 267–293. 486 

25. Zhang, L.; Jacob, D. J.; Knipping, E. M.; Kumar, N.; Munger, J. W., et al. Nitrogen deposition to 487 

the United States: distribution, sources, and processes. Atmos. Chem. Phys. 2012, 12, 4539-4554. 488 

26. van Donkelaar, A.; Martin, R. V.; Pasch, A. N.; Szykman, J. J.; Zhang, L., et al. Improving the 489 

accuracy of daily satellite-derived ground-level fine aerosol concentration estimates for North America. 490 

Environmental Science and Technology 2012, 46, 11971-11978. 491 



23 

 

27. van Donkelaar, A.; Martin, R. V.; Spurr, R. J. D.; Drury, E.; Remer, L. A., et al. Optimal estimation 492 

for global ground-level fine particulate matter concentrations. J. Geophys. Res. 2013, 118, 1–16. 493 

28. Chen, D.; Wang, X. T.; McElroy, M. B.; He, K.; Yantosca, R. M., et al. Regional CO pollution in 494 

China simulated by the high-resolution nested-grid GEOS-Chem model. Atmos. Chem. Phys. 2009, 9, 495 

3825-3839. 496 

29. Park, R. J.; Jacob, D. J.; Field, B. D.; Yantosca, R. M.; Chin, M. Natural and transboundary 497 

pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. 498 

J. Geophys. Res. 2004, 109 (D15). 499 

30. Pye, H. O. T.; Liao, H.; Wu, S.; Mickley, L. J.; Jacob, D. J., et al. Effect of changes in climate and 500 

emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J. Geophys. Res. 2009, 501 

114(D01205). 502 

31. Heald, C. L.; Coe, H.; Jimenez, J. L.; Weber, R. J.; Bahreini, R., et al. Exploring the vertical profile 503 

of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmos. 504 

Chem. Phys. 2011, 11, 12673-12696. 505 

32. Park, R. J.; Jacob, D. J.; Chin, M.; Martin, R. V. Sources of carbonaceous aerosols over the United 506 

States and implications for natural visibility. J. Geophys. Res. 2003, 108 (D12). 507 

33. Wang, Q.; Jacob, D. J.; Fisher, J. A.; Mao, J. T.; Leibensperger, E. M., et al. Sources of 508 

carbonaceous aerosol and deposited black carbon in the Arctic in winter-spring: implications for 509 

radiative forcing. Atmos. Chem. Phys. 2011, 11, 12453-12473. 510 

34. Liao, H.; Henze, D. K.; Seinfeld, J. H.; Wu, S. L.; Mickley, L. J. Biogenic secondary organic aerosol 511 

over the United States: Comparison of climatological simulations with observations. J. Geophys. Res. 512 

2007, 112 (D6). 513 

35. Henze, D. K.; Seinfeld, J. H. Global secondary organic aerosol from isoprene oxidation. 514 

Geophysical Research Letters 2006, 33 (9). 515 

36. Henze, D. K.; Seinfeld, J. H.; Ng, N. L.; Kroll, J. H.; Fu, T. M., et al. Global modeling of secondary 516 

organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways. Atmos. Chem. 517 

Phys. 2008, 8, 2405–2421. 518 

37. Fairlie, T. D.; Jacob, D. J.; Park, R. J. The impact of transpacific transport of mineral dust in the 519 

United States. Atmos. Environ. 2007, 41 (6), 1251–1266. 520 

38. Jaegle, L.; Quinn, P. K.; Bates, T.; Alexander, B.; Lin, J.-T. Global distribution of seas salt aerosols: 521 

New constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 2011, 11, 3137-3157. 522 

39. Martin, R. V.; Jacob, D. J.; Yantosca, R. M.; Chin, M.; Ginoux, P. Global and regional decreases in 523 

tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. 2003, 108 (D3). 524 

40. Drury, E.; Jacob, D. J.; Wang, J.; Spurr, R. J. D.; Chance, K. Improved algorithm for MODIS satellite 525 

retrievals of aerosol optical depths over western North America. J. Geophys. Res. 2008, 113 (D16). 526 



24 

 

41. Ridley, D. A.; Heald, C. L.; Ford, B. J. North African dust export and deposition: A satellite and 527 

model perspective. J. Geophys. Res. 2012, 117 (D02202). 528 

42. Philip, S.; Martin, R. V.; Van Donkelaar, A.; Lo, J. W.-H.; Wang, Y., et al. Global chemical 529 

composition of ambient fine particulate matter for exposure assessment. Environ. Sci. Technol. 2014, 48, 530 

13060-13068. 531 

43. Boys, B.; Martin, R. V.; Van Donkelaar, A.; MacDonell, R.; Hsu, N. C., et al. Fifteen year global 532 

time series of satellite-derived fine particulate matter. Environ. Sci. Technol. 2014, 48, 11109-11118. 533 

44. Holben, B. N.; Tanre, D.; Smirnov, A.; Eck, T. F.; Slutsker, I., et al. An emerging ground-based 534 

aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. 2001, 106 (D11), 12067–535 

12097. 536 

45. Freidl, M. A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N., et al. MODIS Collection 5 537 

global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 538 

2010, 114, 168–182. 539 

46. Brunsdon, C.; Fotheringham, A. S.; Charlton, M. E. Geographically Weighted Regression: A 540 

method for exploring spatial nonstationarity. Geographic Analysis 1996, 28 (4), 281-298. 541 

47. Lim, S. S.; Vos, T.; Flaxman, A. D. F.; Danaei, G.; Shibuya, K., et al. A comparative risk assessment 542 

of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-543 

2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. 544 

48. CEISIN (Center for International Earth Science Information Network) Gridded Population of the 545 

World, Version 3 (GPWv3). In NASA Socioeconomic Data and Applications Center (SEDAC); Available: 546 

http://sedac.ciesin.columbia.edu/data/collection/gpw-v3: 2005. 547 

49. Snider, G. C.; Weagle, C. L.; Martin, R. V.; Van Donkelaar, A.; Conrad, K., et al. SPARTAN: A Global 548 

Network to Evaluate and Enhance Satellite-Based Estimates of Ground-Level Particulate Matter for 549 

Global Health Applications. Atmos. Meas. Tech. 2015, 8, 505-521. 550 

50. Justice, C. O.; Román, M. O.; Csiszar, I.; Vermote, E. F.; Wolfe, R. E., et al. Land and cryosphere 551 

products from Suomi NPP VIIRS: Overview and status. Journal of Geophysical Research: Atmospheres 552 

2013, 118 (17), 9753-9765. 553 

51. Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L. A. MODIS 3 km aerosol product: algorithm and 554 

global perspective. Atmos. Meas. Tech. 2013, 6, 1829-1844. 555 

52. Shaddick, G.; Zidek, J. V. A case study in preferential sampling: Long term monitoring of air 556 

pollution in the UK. Spatial Statistics 2014, 9, 51-65. 557 

53. Cameletti, M.; Lindgren, F.; Simpson, D.; Rue, H. Spatio-temporal modeling of particulate matter 558 

concontration through the SPDE approach. ASTA Advances in Statistical Analysis 2013, 97 (2), 109-131. 559 

 560 

 561 


