Displaying 1 - 5 of 5
Operations
Bajaj, Shaurya; Geraldine Bessie Amali, D. 2019. Species environmental niche distribution modeling for Panthera Tigris Tigris ‘Royal Bengal Tiger’ using machine learning. [Emerging Research in Computing, Information, Communication and Applications] Ed(s): Shetty, N. R.; Patnaik, L. M.; Nagaraj, H. C.; Hamsavath, Prasad Naik; Nalini, N. pp: 251-263 DOI: https://doi.org/10.1007/978-981-13-5953-8_22
Uses Remote Sensing: yes
SEDAC Data Collection(s):
(Conference Proceedings)
export
Yoza-Mitsuishi, Nadia; Sun, Ruoyu; Mathys, Peter. 2019. Spectrum sharing between WLANs and fixed microwave links in 6 and 13 GHz bands: a case study. [2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)] pp: 1-7 DOI: https://doi.org/10.1109/DySPAN.2019.8935662
Uses Remote Sensing: yes
SEDAC Data Collection(s):
gpw-v4
(Conference Proceedings)
export
Mboga, N.; Persello, C.; Bergado, J. R.; Stein, A. 2017. Detection of informal settlements from VHR satellite images using convolutional neural networks. [2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)] pp: 5169-5172 DOI: https://doi.org/10.1109/IGARSS.2017.8128166
Uses Remote Sensing: yes
SEDAC Data Collection(s):
(Conference Proceedings)
export
Wang, Panshi; Huang, Chengquan; Tilton, James C.; Tan, Bin; de Colstoun, Eric C. Brown. 2017. HOTEX: An approach for global mapping of human built-up and settlement extent. [2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)] pp: 1562-1565 DOI: https://doi.org/10.1109/IGARSS.2017.8127268
Uses Remote Sensing: yes
SEDAC Data Collection(s):
grump-v1
(Conference Proceedings)
export
Ruttonsha, Perin; Quilley, Stephen. 2014. Return to the (Managed) Wild: Interpreting Human Settlements as "Designer Ecosystems". [Relating Systems Thinking and Design] pp: 18
Related URL(s): http://systemic-design.net/wp-content/uploads/2015/03/RuttonshaQuilley-ReturnToT…
Uses Remote Sensing: yes
SEDAC Data Collection(s):
(Conference Proceedings)
export
Export results as CSVXML