Displaying 1 - 6 of 6
Operations
Bissiri, Mounirah; Moura, Pedro; Figueiredo, Nuno Carvalho; Pereira da Silva, Patrícia. 2020. A geospatial approach towards defining cost-optimal electrification pathways in West Africa. [Energy] . 200: 117471 DOI: https://doi.org/10.1016/j.energy.2020.117471
Uses Remote Sensing: yes
SEDAC Data Collection(s):
grump-v1
ulandsat
(Journal Article)
export
Florczyk, A. J.; Melchiorri, M.; Zeidler, J.; Corbane, C.; Schiavina, M.; Freire, S.; Sabo, F.; Politis, P.; Esch, T.; Pesaresi, M. 2020. The Generalised Settlement Area: mapping the Earth surface in the vicinity of built-up areas. [International Journal of Digital Earth] . 13(1): 45-60 DOI: https://doi.org/10.1080/17538947.2018.1550121
Uses Remote Sensing: yes
SEDAC Data Collection(s):
grump-v1
ulandsat
(Journal Article)
export
Shapiro, Julie Teresa; Sovie, Adia R.; Faller, Chelsey R.; Monadjem, Ara; Fletcher, Robert J.; McCleery, Robert A. 2020. Ebola spillover correlates with bat diversity. [European Journal of Wildlife Research] . 66(1): 12 DOI: https://doi.org/10.1007/s10344-019-1346-7
SEDAC Data Collection(s):
aglands
gpw-v3
groads
(Journal Article)
export
Bhatt, C. M.; Karnatak, Harish C. 2019. Geoweb services and open online data repositories for North West Himalayas studies including disaster monitoring and mitigation. [Remote Sensing of Northwest Himalayan Ecosystems] Ed(s): Navalgund, R. R.; Kumar, A. Senthil; Nandy, Subrata. pp: 501-536 DOI: https://doi.org/10.1007/978-981-13-2128-3_23
Uses Remote Sensing: yes
SEDAC Data Collection(s):
aglands
anthromes
gpw-v4
groads
grump-v1
ndh
(Book Section)
export
Bhunia, Gouri Sankar; Shit, Pravat Kumar. 2019. Spatial Database for Public Health and Cartographic Visualization. [Geospatial Analysis of Public Health] Ed(s): Bhunia, Gouri Sankar; Shit, Pravat Kumar. pp: 29-57 DOI: https://doi.org/10.1007/978-3-030-01680-7_2
Uses Remote Sensing: yes
SEDAC Data Collection(s):
aglands
gpw-v4
grand-v1
groads
(Book Section)
export
Liu, Xue; de Sherbinin, Alex; Zhan, Yanni. 2019. Mapping urban extent at large spatial scales using machine learning methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data. [Remote Sensing] . 11(10): 1247 DOI: https://doi.org/10.3390/rs11101247
Uses Remote Sensing: yes
SEDAC Data Collection(s):
grump-v1
ulandsat
(Journal Article)
export
Export results as CSVXML